M.Tech. Degree Examination, January 2013 Synthesis and Optimization of Digital Circuits

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Explain in detail, microelectronics design styles. (08 Marks)

- b. What are the different phases involved in the design of microelectronics circuits. Briefly explain each of them. (06 Marks)
- c. Consider the function f = ab + bc + ac, compute an expansion on orthonormal basis. (given $\phi_1 = ab$ and $\phi_2 = a + b$) verify ϕ_1 and ϕ_2 are orthonormal. (06 Marks)
- 2 a. Compute the longest path weight of the graph shown below using LIAO WONG algorithm. Show the graphs in each step. (08 Marks)

Fig. Q2(a)

b. For the vertex /edge incidence matrix shown. Find exact/minimum cover using EXACT - COVER algorithm. With the pseudo code for the same.

$$\mathbf{A}_{\mathbf{I}} = \begin{vmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{vmatrix}$$

(12 Marks)

- 3 a. Draw the mealy state machine to detect two or more consecutive 1's in an input data stream.

 Write the VHDL behavioral model for the same. (08 Marks)
 - b. With suitable examples, briefly explain the various data flow based transformations.

(12 Marks)

- a. For the function f = ab + ac + a, compute all prime implicates using SCC operator. (08 Marks)
 b. Consider the function f(abc) = Σm (0, 1, 2, 4) + d (6). Find expanded cover which is prime and minimal with respect to single implicant containment. (12 Marks)
- 5 a. With suitable example, explain ill posed and well posed constraints. (06 Marks)
 - b. Write the pseudo code for Force directed scheduling algorithm for minimum latency scheduling problem under resource constaints. Briefly give the comments. (07 Marks)
 - c. What is the need of loop folding? With suitable sequencing graph, explain loop folding.

- 6 a. For the function $G_x = ace + bce + de + f$, $G_S = cde + b$, and auxiliary function $G_{aux} = ace + bce + de + f + cde + b$. write cube -variable matrix and obtain prime rectangle. Show extraction of ce and draw extraction of single implicant sub expression. (10 Marks)
 - b. Consider the logic network shown below, determine topological critical path for vertices with zero slack. Assume the input data ready times of $t_a = 0$ and $t_b = 10$ and propagation delay of internal vertices be $d_g = 3$, $d_h = 8$, $d_m = 1$, $d_k = 10$, $d_L = 3$ dn = 5, $d_p = 2$, $d_q = 2$, $d_x = 2$, $d_y = 3$. Give the relations used. (10 Marks)

7 a. For the state table shown, draw the mealy state diagram. List the compatible and incompatible pairs. Find the maximal classes of compatible states. Draw the minimum state diagram.

(10 Marks)

Input	State	Next state	Output
0	S_1	S_3	1
1	S_1	S_5	*
0	S_2	S_3	*
1	S_2	S ₅	1
0	S_3	S ₂	0
1	S_3	S_1	1
0	S_4	S ₄	0
1	S ₄	S ₅	1
0	S_5	S ₄	1
1	S ₅	S_1	0

- b. What is the goal of FSM decomposition? With the help of figures, explain the different types of FSM(Finite State Machine) decomposition. Also explain the factorization. (10 Marks)
- **8** a. Explain briefly TREE BASED covering.

(06 Marks)

b. List and explain the types of simulators.

(06 Marks)

c. With neat block diagram, explain built-in-self-test (BIST) architecture.

(08 Marks)

* * * * *